

THE FUTURE OF ENERGY TRANSITION AND INDEPENDENCE

Evolution of Drilling, Electrification and Clean Technologies by 2050

Powered by our EnerFuture scenarios derived from the POLES-Enerdata model

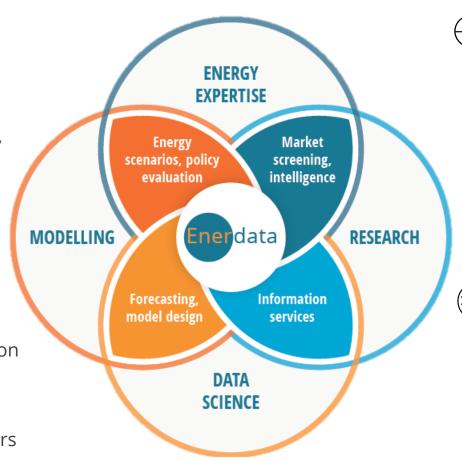
A new energy world?

Since 1991, we have proven a renowned expertise in energy-climate scenario modelling services

- **Independent energy research & consulting company since 1991**
- > Expert in analysis and forecasting of global energy & climate issues
- In-house and globally recognized sectoral databases and forecasting models

- Headquartered in the Grenoble (French Alps) research cluster; a subsidiary in Singapore
- > Global reach: Clients and projects in Europe, Asia, Americas, Middle East, Africa
- **Connected** with **leading public institutions, financial and corporate actors, academia and NGO actors**

Our services – Combining fields of expertise from research, data science to modelling



Modelling

- Creation of E-C scenarios, climate alignment trajectories
- Identification of alignment pathways by sector and by country

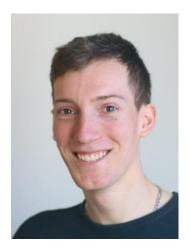
- Knowledge of market drivers
- Expertise covering all energy transition pillars: mix decarbonisation, energy efficiency, sufficiency, and flexibility (assets and markets)
- Deep coverage: all energies, all sectors and 150+ countries

Market intelligence

- Market Research
- Business intelligence
- Energy market watch
- Tracking of E-C policies worldwide

Data science

- Gathering, consolidating and analysing energy data
- Market forecasts: supply, demand and prices


Agenda of the webinar

- Introduction
- **Drilling for fuels... Plugging more electricity...**
- **Energy sovereignty**
- **Broader picture**
- **Takeaways and Q&A session**

Speaker's introduction

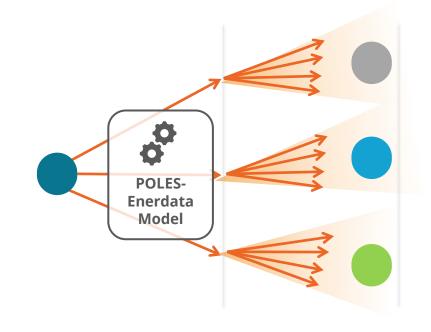
Jacques DESPRES Senior Energy Modelling Analyst

Esteban DROUET Lead EnerFuture modeller

Introduction
Methodological approach,
Scenario definition

Scenario construction

Starting from today, we explore different pathways to 2050 relying on varying assumptions but a common framework


Today

Energy demand
Activity, technological description

Energy supply
Technologies

Energy prices
Several markets

GHG emissions

2050

Demand

Global & regional dynamics, fuel mix, efficiency...

Supply & Prices

Availability, self-sufficiency, trade, bills...

Sustainability

GHG emissions...

- Use macroeconomic assumptions:
 - population (UN),
 - ▶ GDP growth (IMF, CEPII, OECD)

- Apply alternative assumptions for key drivers:
 - climate and energy policies,
 - available technological options, etc.

• Results in contrasted pathways

Scenario definition

Three energy-climate scenarios to explore possible futures of global energy systems

EnerBase

Continuation of existing policies and trends

Temperature increase around 3°C

EnerBlue

Achievement of new NDCs submitted up to end of 2024

Temperature increase in the 2-2.5°C range

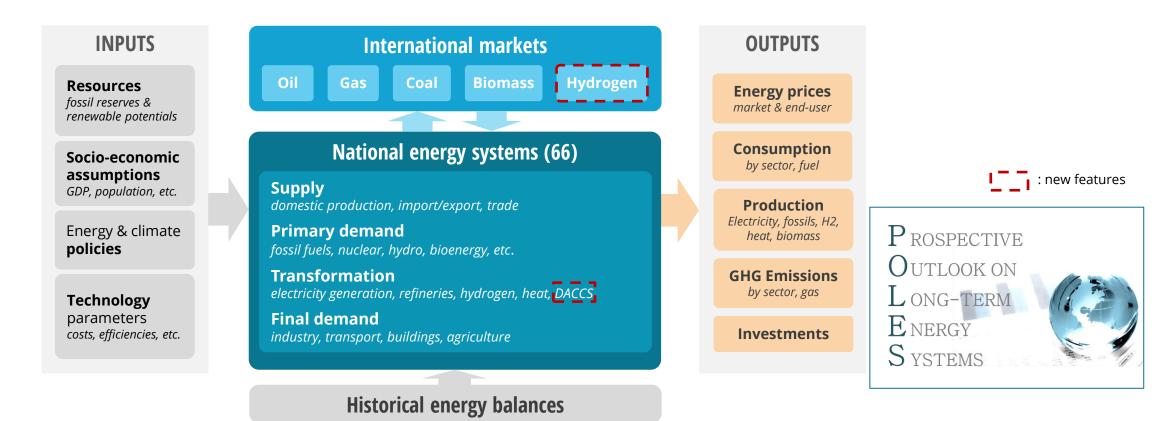
EnerGreen

Ambitious GHG emissions budget in line with the Paris Agreement

Temperature increase well below 2°C

- EnerFuture is relying on the recognised **POLES-Enerdata model**, an energy-economy-environment model of the global energy system,
- 66 countries and regions, with global coverage and annual step until 2050,
- with dedicating modelling of the individual end-use sectors, energy supply, prices and GHG emissions

Prospective
Outlook on
Long-term
Energy
Systems


Note: The POLES model has been initially developed by the GAEL (Grenoble Applied Economics Lab) at the University of Grenoble Alpes

The POLES-Enerdata model

The EnerFuture scenarios are produced using our POLES-Enerdata global energy model

- POLES-Enerdata: Prospective Outlook on Long-term Energy Systems;
- Owned, maintained and operated by Enerdata

What's new in 2025?

- Integration of up-to-date historical data up to 2023
- Modelling developments on the POLES-Enerdata model have been performed, including:
 - Addition of hydrogen feedstock consumption
 - Improved modelling of international maritime freight
 - Development of e-fuels in transport
 - Integration of international H2 trade
- New projections:
 - Updated economic projections
 - Fossil fuel prices, supply and demand (taking into account the Ukrainian crisis)
 - Energy & climate policy developments, including up-to-date NDCs (e.g. Brazil)
 - Electrification updated trends

What can we say on energy transition and energy independence based on our latest scenarios?

Drilling for fuels... Plugging more electricity... Pathways to energy independence?

2.1 The future of fossil fuel markets

Oil supply: peak production

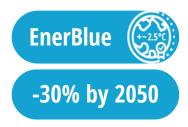
• **EnerBase** -10% by 2050, our baseline scenario, is stabilising its energy-related emissions throughout 2050 – as well as its fossil fuel extractions.

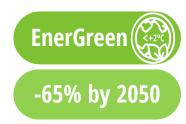
Oil production plateaus centred around 2032, then decreasing slowly.

- EnerBlue -42% by 2050 , with NDCs implemented, reduces oil production by half
- EnerGreen -65% by 2050 , our well-below 2°C scenario, reduces oil production by two-thirds
- The world would decrease oil production to 88 Mbd in EnerBase and down to 34 Mbd in EnerGreen
- The **USA** would decrease their oil production from a peak of 18 Mbd to **3.8 5.6** Mbd in 2050, depending on the scenario

The oil supply is decreasing in various proportions – depending on the scenario.

Respecting the climate commitments, or even just the current engagements, does not leave space for increasing oil supply


Source: Enerdata, <u>EnerFuture</u>



Gas supply: at a crossroad

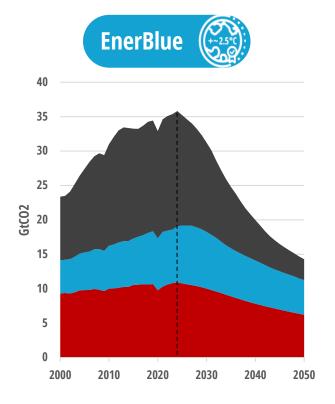
• The future role of gas depends a lot on the pathway chosen

- In the USA, it could increase by around 20% in EnerBase or reduce to close-to-zero in EnerGreen
- In Europe EEA, it could reduce by 30% or by up to ¾
- The **Gulf** region represents around 21% of the global gas supply today and reaches 26-27% in 2050 in **EnerBase** and **EnerGreen** and up to 38% in **EnerBlue**
- **EnerBase** sees **Russia** and the **USA** each holding **roughly 13-15%** of gas production keeping market concentration at current levels as **China** joins the leading gas producers.

...Yet, these market shares drop to a mere 5-9% in EnerGreen

The gas supply is very uncertain depending on the energy-climate scenario,

- » with the Gulf region reinforcing its hegemony;
- » China potentially emerging as a key actor (EnerBase);
- » A smaller and more distributed market in EnerGreen.


Fossil fuel emissions at a glance

Oil, gas and coal all contribute to CO_2 emissions, in different proportions:

EnerBase

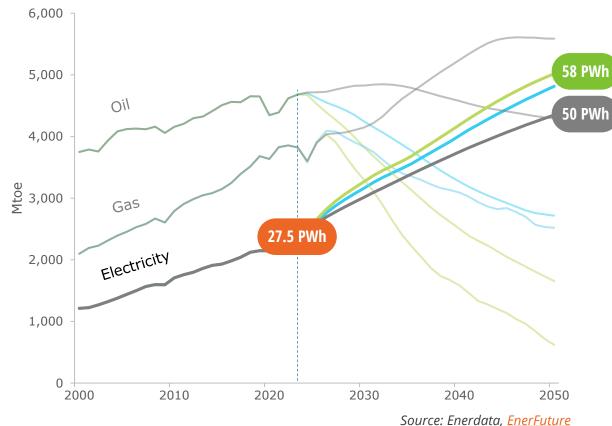
GLOBAL CO₂ EMISSIONS

EnerGreen ■ Coal 6tC02 Gas Oil

CO₂ emissions, excluding international transport and AFOLU

2.2 The pace of electrification

Powering the world?

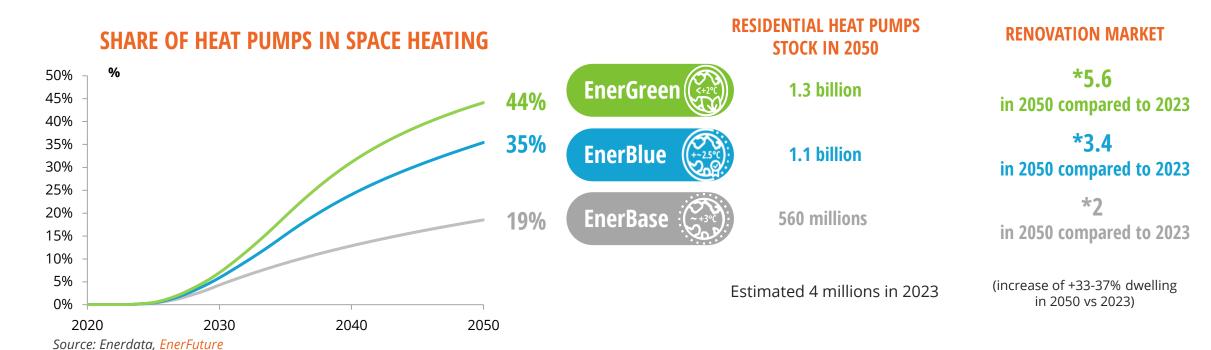

- Historically, all sources of energy have increased steadily
- In our scenarios, electricity supply increases in all scenarios, but faster when accounting for climate ambition:

ELECTRICITY ANNUAL GROWTH RATES

- Electrification allows decarbonisation
- In parallel, efficiency gains tend to restrain total energy demand
- Sector-by-sector trends need to be looked closely

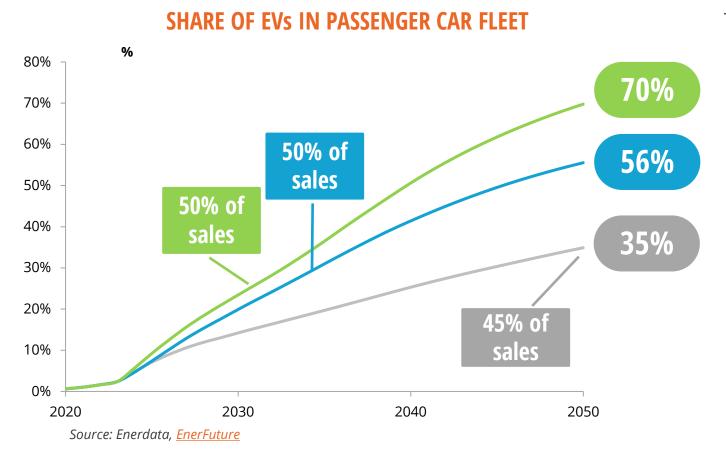
SCENARIOS FOR THE ENERGY MIX

From 3.5 MWh/cap today...


- » to 5.2 MWh/cap
- » and up to 6 MWh/cap in 2050

Residential sector electrification

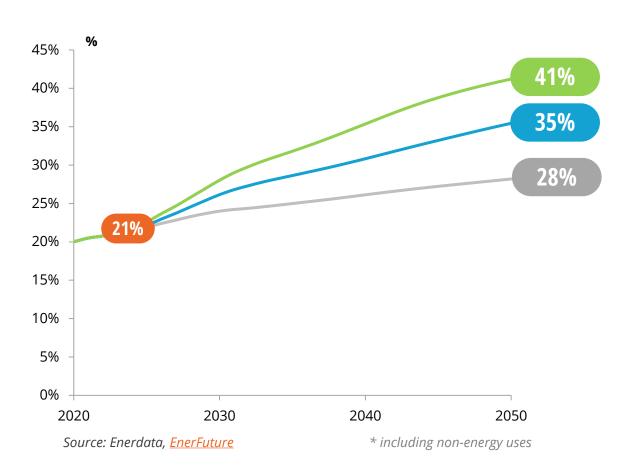
Heat pumps play a key role to help removing fossil fuels:


- They are approximately **3 times as efficient** as other fuel-based heating systems
- They are even more efficient in **renovated** homes, which develop at different rates depending on the scenario.

In developing countries and especially in Africa, urgent action to support access to **clean cooking** is required. **Electricity access** as well as **Air Conditioning** develops, also driving the global trends of electrification.

Road transport electrification

The development of **EVs** is key to decarbonise transports:

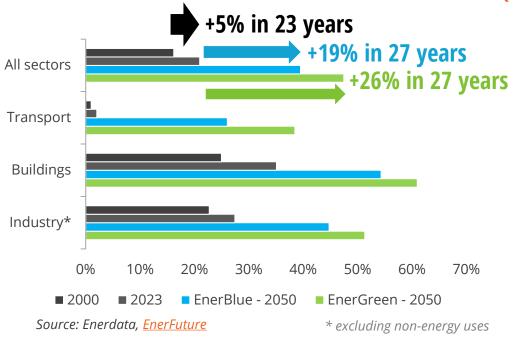

- Electric Vehicles (EVs) quickly become the major type of passenger cars in EnerGreen, where they represent 70% of the total car fleet in 2050.
- EVs are also a strong option for light and shortdistance freight transport.
- In EnerGreen, priority is given to small EVs and carsharing to avoid rebound effects, reduce material footprint and environmental impacts of lithium, cobalt and other critical materials.
- Hydrogen fuel cell vehicles are only developed in niche markets within heavy and long-distance freight transport

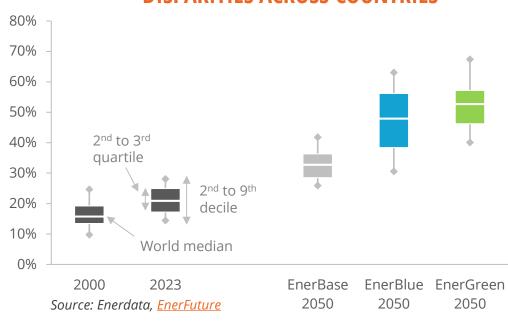
- » In EnerBase, electric vehicle sales overtake conventional engines by 2045
- » In EnerGreen, it is already the case by 2030; or 2027 if plug-in hybrids are included

Industry electrification

SHARE OF ELECTRICITY IN INDUSTRY

Industry's energy intensity drops by 47% in **EnerGreen** over 2023-2050:


- Circularity: higher recycling rates and better reusability of materials and products, with huge gaps and regional disparities in recycling.
- Sufficiency: extending lifetime of buildings and appliances, reducing car size, etc., allow to indirectly reduce industrial total demand, by curbing global material demand (steel, cement).
- Electrification keeps increasing, and doubles between 2023 and 2050 in EnerGreen: heat pumps for low temperature heat but also middle temperatures, with other electric technologies such as electric arc furnaces to decarbonise high temperature processes.


Electrification

Electrification is a main pillar of energy transition, in all sectors and across countries

SHARE OF ELECTRICITY IN FINAL DEMAND BY SECTOR (WORLD)

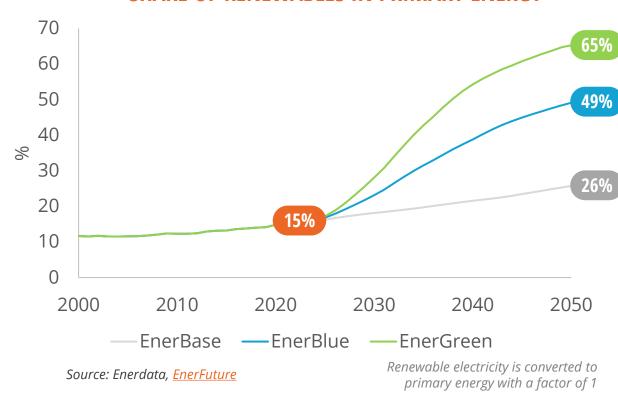
SHARE OF ELECTRICITY IN FINAL DEMAND: DISPARITIES ACROSS COUNTRIES

The share of electricity in final demand increases across all sectors and regions in all three scenarios, reaching respectively 40% in EnerBlue and 47% in EnerGreen in 2050 globally, from the current 21%.

- The growth of electricity is most spectacular in **transports**, with an increase by **24-36%** from 2023 to 2050.
- EnerGreen converts ¼ of buildings and industry fossil fuels to electricity between 2023 and 2050.
- Even the slowest countries electrify their energy system to at least 40% in EnerGreen

Energy sovereignty Costs and bills

Shift towards renewables

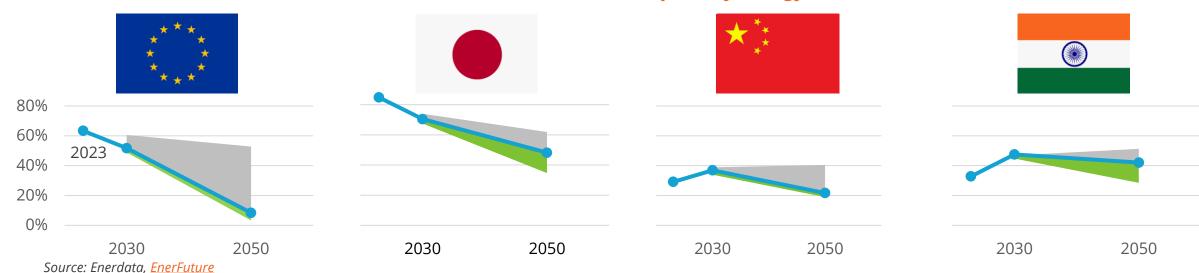

Primary energy supply is composed of 15% renewables in 2023

- 50% as reached as soon as 2038 in EnerGreen, 2/3 in 2050, with a tripling of renewable capacities by 2031
- 50% reached towards 2050 in EnerBlue
- These major transitions do not materialize in EnerBase

Focus on biomass:

- Historically the main renewable energy used: 10% of 2023's primary energy supply
- No major change in EnerBase
- Diversification of uses in EnerBlue and EnerGreen:
 - BECCS in power and industry sectors captures up to 0.5 GtCO₂
 (EnerGreen)
 - Biofuels in transports, notably for international bunkers:
 25-29% in aviation fuel mix
 - Biomethane will help to reduce remaining natural gas uses:
 Up to 59% of the grid gas is covered in EnerGreen
- But its overall use remains at a sustainable level:
 - 17% of the primary mix in EnerBlue, up to 23% in EnerGreen

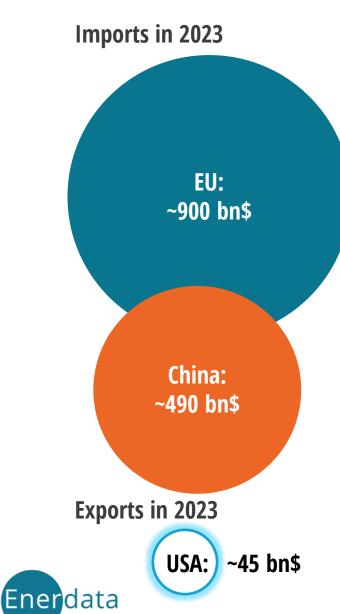
SHARE OF RENEWABLES IN PRIMARY ENERGY


Total bioenergy exploited does not exceed 110 EJ by 2050, well below sustainable potentials

Foreign dependency on fossil fuels

• Fossil fuel exporters concentrate 15% of global population... supplying the other 85%

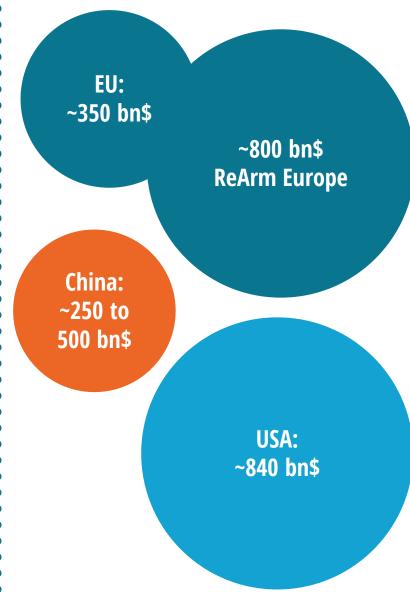
ENERGY IMPORTED as a % of total primary energy demand

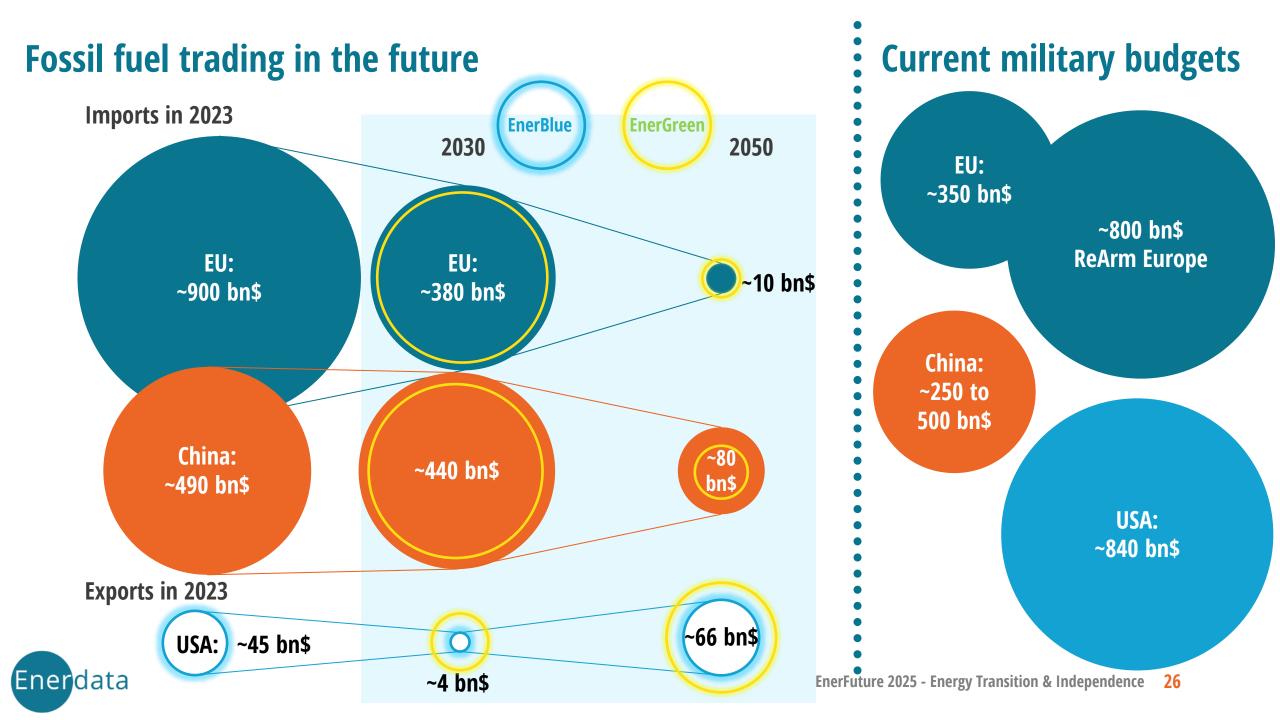


- Huge revolution for the European energy mix, immensely improving the energy independence
- Very large potential for improving the energy balance of Japan
- China and India have potential to mitigate their energy imports
 through efficiency, electricity and renewables
 despite a strong energy demand growth (+73% final energy demand in India)

Decarbonising to increase energy sovereignty!

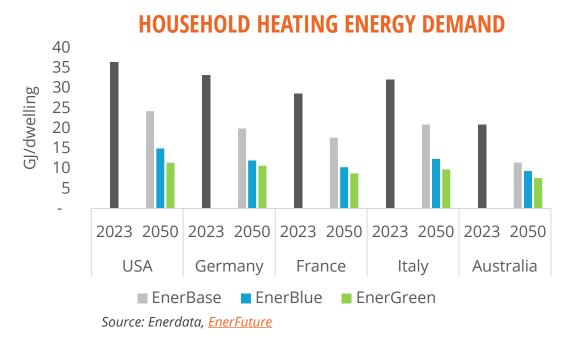
Fossil fuel trading: a huge energy budget


Big energy importers:


Fossil fuel imports **exceed** military budgets Reducing fossil fuel dependency = **sovereignty**

Energy exporters:

Reducing their national consumption = savings +on the long-term, need to find other sources of incomes, e.g. services, energy transition industries...


Current military budgets

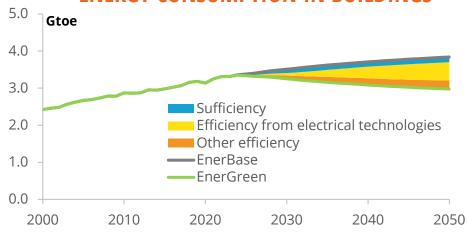


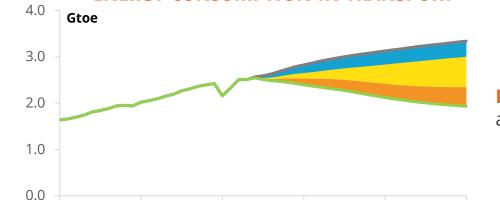
Household energy bills: less energy demand, lower bills

- Significant reduction of the heating bill
- Heat pump CAPEX extra cost is more than offset by a much higher efficiency
- Sufficiency measures impact significantly the bill in **EnerGreen**: approx. 10% reduction in the EU, i.e. about 100\$

HOUSEHOLD HEATING ENERGY BUDGET

Towards a more affordable world


USD2024/dwelling



Sufficiency and efficiency

Both technological improvements and societal changes play a significant role to limit energy consumption

2020

2000

Enerdata

2010

ENERGY CONSUMPTION IN TRANSPORT

2030

2040

Source: Enerdata, EnerFuture

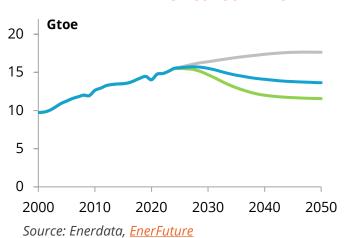
2050

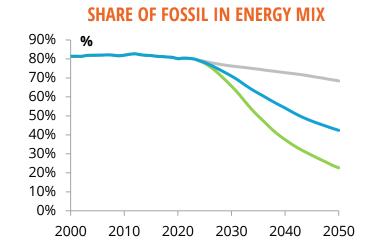
Sufficiency policies could allow to reduce the energy demand in buildings and transport by **up to 9%** through behavioural, organisational & cultural changes:

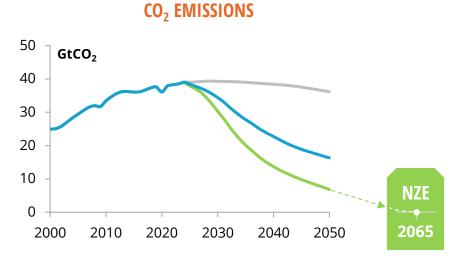
- Better control of temperature in buildings for heating and cooling, limiting appliances (number and size)
- 14% reduction of passenger car traffic in EnerGreen vs. EnerBase
 - Modal shift (active mobility, public transport) important regional differences
 - Distances travelled decrease in developed countries thanks to spatial planning and lifestyle changes (15 min model city, teleworking, carpooling, sustainable leisure travels, etc)
- Other policies could also indirectly impact industry production... while also reducing pressure on other environmental issues (metal production, resources, critical minerals, etc.)

Energy efficiency could help reducing the final energy consumption in buildings and transport by **up to 23%**

- Heat pumps & EVs reduce by a factor of 3 the final energy demand
- Buildings insulation, improvements of engines, appliances & equipment, optimisation of supply chains


4. Broader picture




Global key indicators

Main results from our 3 scenarios at a glance

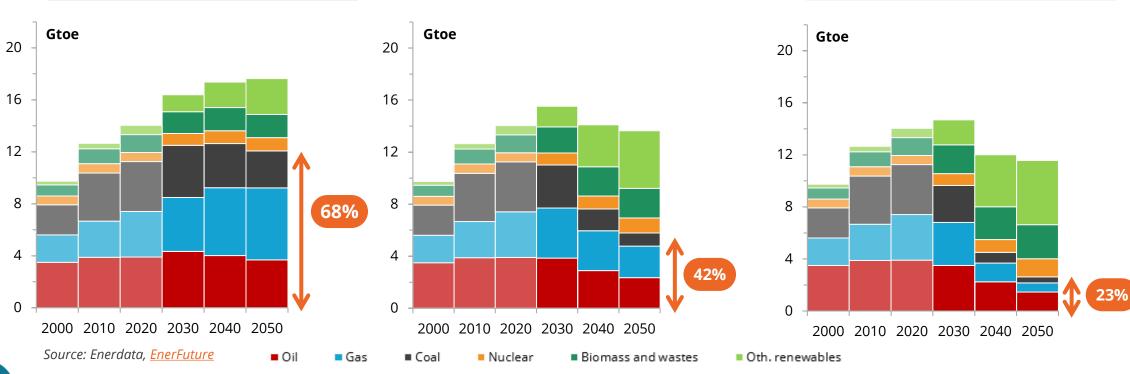
PRIMARY ENERGY CONSUMPTION

Average evolution (%/y)	2011-2023	2023-2050		
		EnerBase	EnerBlue	EnerGreen
Carbon intensity CO ₂ emissions released to produce one unit of gross domestic product (GDP)	-2.1%	-2.8%	-5.6%	-8.6%
Energy intensity of GDP (final) Energy consumption necessary to produce one unit of gross domestic product (GDP)	-1.5%	-1.8%	-2.5%	-3.1%
Carbon factor CO ₂ emissions released for an average unit of energy consumption	-0.4%	-0.8%	-2.8%	-5.3%

Global primary energy mix

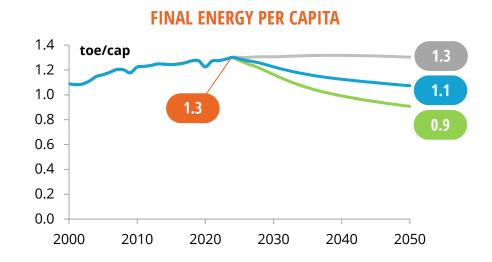
How quick do we shift away from fossil fuels depending on our global climate ambition?

EnerBase

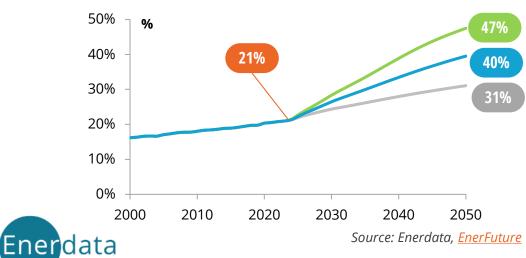

In a **BAU** scenario, fossil fuels keep growing and account for 12 Gtoe or 68% by 2050

EnerBlue

Announced policies and objectives allow to quickly curb fossil fuel consumption, limiting it to 6 Gtoe or 42% by 2050


EnerGreen

To obtain a trajectory compatible with **below 2°C**, fossil fuels should rapidly decrease to 3 Gtoe or 23% by 2050



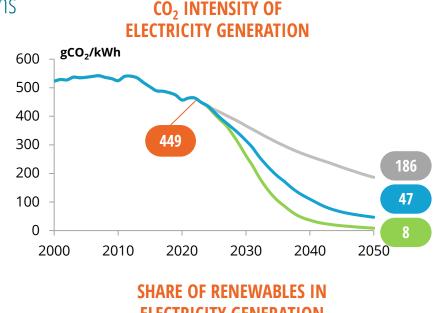
Global final energy consumption

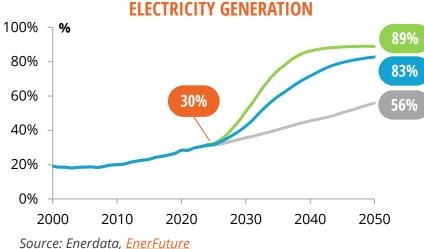
How should we transform the way we consume energy to reach our climate commitments?

Reducing energy needs is a necessary component of decarbonisation

- Energy efficiency is certainly a key lever across all end-uses
- Sufficiency and behavioural changes are also key to reduce energy consumption, especially in advanced economies
- Combined, these two effects allow to decrease final energy per capita in 2050 by 17% in EnerBlue and 30% in EnerGreen

Electricity emerges as the main fuel in final consumption

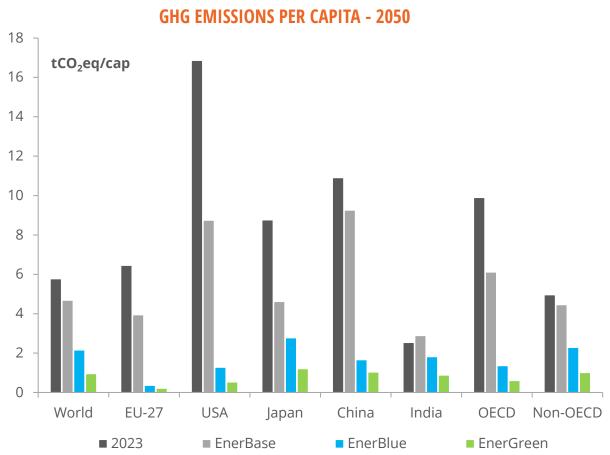

- Electricity develops in most final end-uses, and notably:
 - Buildings heating (e.g. heat pumps)
 - Passenger & light freight transport (electric vehicles)
 - Low temperature processes in industry (heat pumps)
 - High temperature industrial processes (e.g. electric arc furnaces)
- In a BAU trajectory, electrification keeps progressing to 31% by 2050.
 Its rise is much accelerated in EnerBlue (40%) and even more in EnerGreen (47%).


Global electricity generation mix

Decarbonising the electricity systems is required for a successful reduction of our emissions

Electricity generation needs to be quickly decarbonised to reach ambitious climate targets.

- In EnerBase, despite the absence of strong climate policies, we observe a continued development of renewables to produce electricity, helping the average electricity emission factor to decline by almost 60% from 2023 to 2050.
- In EnerBlue, the additional ambition from NDC objectives and national policies lead to a stronger deployment of renewable technologies, and hence to lower emissions per kWh: -90% over 2023-2050.
- To achieve a below 2°C scenario in EnerGreen, the push towards renewables needs to be even deeper, especially in the medium term. This leads specific emissions to drop by 98% by 2050.



Global emissions per capita

To what extent does the global picture hide regional discrepancies?

Source: Enerdata, <u>EnerFuture</u>

Large historical discrepancies in emissions per capita reflect different development levels and share of fossil in the primary mix:

- Advanced economies are typically higher than developing countries
- Countries heavily relying on coal are also higher (e.g. USA, China)

The continuation of historical trends in **EnerBase** does not allow for a change in this picture, with marginal evolution of these differences by 2050

The **mitigation actions** undertaken in **EnerBlue**, and even more so in **EnerGreen**, lead to **a completely different picture in 2050**:

- OECD countries, and particularly the EU and the USA, see their emissions per capita decrease to low levels by 2050 (1.36 tCO_{2ea}/cap in EnerBlue)
- Non-OECD countries also decrease their emissions per capita, but less rapidly so, reaching about 2.28 tCO_{2eq}/cap in 2050 in EnerBlue

What could a « well below 2°C » world look like in 2050?

EnerGreen 2050 snapshot

M

-15% Final energy demand VS. 2023

ELECTRIFICATION

食,

x2.3 Electricity share vs 2023

CLEAN ENERGY SUPPLY

Fossil fuel consumption
VS 2023

12% Efficiency gains

3%
Sufficiency gains

70%
Electric cars
in the fleet

44%
Heat pumps in space heating

95% CO₂-free electricity **76%**H₂ from electrolysis

Takeaways and Q&A Wrapping up the analysis

- Energy transition and Energy sovereignty go hand-in-hand for most regions:
 - Approx. 70% of countries see a decreased trade risk with lower oil, gas, and coal needs
- This is only partly replaced by new dependencies for minerals and equipment in electricity and transportation systems, for approx. 82% of countries
 - o China, Australia... a new energy-related trading map
- The system becomes much more renewable overall, with potential for dependency mitigation
 - Technological improvements
 - Sufficiency
 - Recycling

Source: Cheng, J., Tong, D., Zhao, H. et al. Trade risks to energy security in net-zero emissions energy scenarios. Nat. Clim. Chang. (2025). https://doi.org/10.1038/s41558-025-02305-1

EnerFuture interface

Benefit from instantaneous access to POLES-Enerdata model outputs

- Annual projections to 2050 for 55 countries/aggregates
 - 3 Enerdata scenarios: EnerBase, EnerBlue, EnerGreen
 - Demand, prices and emissions forecasts for all energies at sector level
 - Power generation forecasts by fuel (both capacities and production)

- Insightful indicators and country-level dashboards
- Intuitive online interface for visualisation, table & graph generation and data queries
- Yearly update to include latest historical statistics and developments in the energy sector
- Option: Marginal Abatement Cost Curves for CO₂ by sector and industrial branches
- Option: deep dive on energy demand with end-use level results and indicators

Wrap-up

EnerFuture scenarios in a few key points

EnerBase

EnerBlue

EnerGreen

CLIMATES OBJECTIVES

- Climate change mitigation efforts limited to existing trends
- NDCs objectives not reached
- ~3°C temperature increase

KEY OUTCOMES

- Demand continues to grow: +17% over 2023-2050.
- Fossil fuels keep growing and still account for 68% of primary mix in 2050.
- RES power production multiplies by 3.4 over 2023-2050, and represents 56% of the mix in 2050.
- CO₂ emissions peak between 2030 and 2035, before decreasing to 45 GtCO₂ in 2050.

CLIMATES OBJECTIVES

- Climate ambition in line with newest NDC targets (as of 2024)
- Progressive policy enforcement
- Between 2 and 2.5°C temperature increase

KEY OUTCOMES

- Demand decreases by 10% over 2023-2050 (+6% in non-OECD).
- Energy mix transformation: less fossil (42% in 2050), RES share 49% by 2050.
- Final energy intensity of GDP drops by 50% over 2023-2050.
- CO₂ emissions halve to around 16 GtCO₂ by 2050, thanks to energy sufficiency, efficiency and development of renewables.

CLIMATES OBJECTIVES

- Strong global efforts towards climate change mitigation
- Ambitious GHG emissions budgets
- < 2°C temperature increase</p>

KEY OUTCOMES

- Global demand decreases by 23% between 2023 and 2050.
- Fossil fuels represent around 23% of the energy mix in 2050, with a share of coal that decline by 89% over 2023-2050.
- RES and nuclear represent 98% of power generation in 2050.
- CO₂ emissions reach around 7 GtCO₂ in 2050 and net zero in 2065; with very strong reduction efforts in non-OECD.

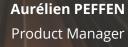
HELPING YOU SHAPE THE ENERGY TRANSITION

About Enerdata:

Enerdata is an independent research company that specialises in the analysis and forecasting of energy and climate issues. We do this at a variety of different geographic and business / sector levels.

Leveraging our globally recognised databases, business intelligence processes, and prospective models, we assist our clients – which include companies, investors, and public authorities around the world – in designing their policies, strategies, and business plans.

Enerdata



EnerFuture 2025 GLOBAL ENERGY SCENARIOS THROUGH 2050

PUBLICATION AUTHORS

Perrine MEZIAT-BURDIN

Energy Analyst

Want more details?
ACCESS THE FULL PUBLICATION

CONTACT

research@enerdata.net

https://www.enerdata.net