European Union Key Energy Figures
Current Trends and EU 2030 Objectives Assessment

Karpacz Energy Forum, January 2015

Pascal CHARRIAU, CEO
EU Key Energy Indicators
Current Trends and EU 2030 Objectives Assessment

- Key Energy Indicators are shaken with fluctuant economic and political conditions
- Nevertheless medium and long term trends depend mostly on market fundamentals and structural decisions / policies

CO_2 emissions, Power Mix, Renewables, Energy Efficiency... :
- Where do we stand early 2015 ?
- How can we assess EU 2020 trends and 2030 objectives ?
Energy consumption is declining in the EU

- Primary Energy consumption reducing for almost 10 years
 - Reduced GDP growth
 - Energy Intensity decrease thanks to Energy Efficiency improvement (1.5pt / y)
- Electricity consumption now also decreasing (4 years)
 - No more substitution
- Differences depending on the countries
CO$_2$ emissions continue to decrease slowly

- Directly linked with energy consumption trends
- Limited Carbon Intensity decrease with substitutions:
 - Electricity & Biomass $↗$
 - Oil $↘$
 - Power mix:
 RES $↗$ Gas $↘$ Coal $→$
2014 events and potential impact

- Ukraine & Russia
 - Stronger focus on energy supply security
 - Reinforcement of energy independence objective
 - Actions to reinforce suppliers diversity

- EU 2030 Framework for Energy and Climate Policies
 - Change of trend in the CO$_2$ emissions reduction objectives

- Oil price strong decrease
 - Impact on supply structure + shale O&G competitiveness + investments reduction (Oil, LNG...)
 - Impact on country economic policies
EU 2020 3*20 Objectives – Situation end 2014

- EU is on the way to meet its 2020 Climate & Energy targets
 - GHG emissions reductions: -20% vs 1990
 - Share of Renewables: 20% of final energy
 - Energy consumption: -20% vs projection

- These results have been strongly impacted by the sluggish economic growth
 - Carbon intensity reduction < Planned trend

- Some key enablers have not yet been (fully) deployed
 - ETS market
 - Energy Efficiency investments
EU 2030 Climate & Energy Framework

Agreed headline targets
2030 Framework for Climate and Energy

2020
-20% Greenhouse Gas Emissions
20% Renewable Energy
20% Energy Efficiency
10% Interconnection

2030
≤ - 40% Greenhouse Gas Emissions
≥ 27% Renewable Energy
≥ 27%* Energy Efficiency
15% Interconnection

* To be reviewed by 2020, having in mind an EU level of 30%

New governance system + indicators

Enerdata
EU 2030 Objectives Assessment
A clear change in the trends

<table>
<thead>
<tr>
<th>Yearly average evolution</th>
<th>2000-2010</th>
<th>2010-2020</th>
<th>2020-2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP growth (%/year)</td>
<td>1.5 %</td>
<td>1.4 %</td>
<td>1.7 %</td>
</tr>
<tr>
<td>Primary Demand (%/year)</td>
<td>0.2 %</td>
<td>-0.5 %</td>
<td>-0.4 %</td>
</tr>
<tr>
<td>Energy Intensity (%/year)</td>
<td>-1.3 %</td>
<td>-1.9 %</td>
<td>-2.1 %</td>
</tr>
<tr>
<td>New RES power capacities (GW/year)</td>
<td>18</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>Carbon Intensity (%/year)</td>
<td>-2.0 %</td>
<td>-2.5 %</td>
<td>-3.5 %</td>
</tr>
</tbody>
</table>

- Analysis of the EU2030 Objectives using POLES model
- Projections based on Enerdata EU2030 scenario
New Member States (13): A shifting energy mix

- Low energy consumption per capita
- Large potential for energy efficiency to cover energy intensity gap with EU-15
- Large development of nuclear and renewables
- Shale gas: even if tapped, would make a low contribution to energy independence
- EU Climate & Energy policies: larger role for gas, but also for nuclear & renewables

Energy demand, New MS

Analysis based on Enerdata scenario

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2030 “BAU”</th>
<th>2030 EU Obj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>20%</td>
<td>24%</td>
<td>25%</td>
</tr>
<tr>
<td>Gas</td>
<td>37%</td>
<td>29%</td>
<td>19%</td>
</tr>
<tr>
<td>Nuc.</td>
<td>18%</td>
<td>24%</td>
<td>33%</td>
</tr>
<tr>
<td>Bio.</td>
<td>9%</td>
<td>19%</td>
<td>15%</td>
</tr>
<tr>
<td>Coal</td>
<td>8%</td>
<td>11%</td>
<td>14%</td>
</tr>
<tr>
<td>Hydro</td>
<td>25%</td>
<td>24%</td>
<td>23%</td>
</tr>
<tr>
<td>Wind</td>
<td>23%</td>
<td>23%</td>
<td>25%</td>
</tr>
<tr>
<td>Solar</td>
<td>11%</td>
<td>14%</td>
<td>11%</td>
</tr>
<tr>
<td>Oth.</td>
<td>8%</td>
<td>11%</td>
<td>14%</td>
</tr>
</tbody>
</table>

Analysis based on Enerdata scenario
GHG Emissions reduction sources in New MS

- New MS would bring 1/3 of EU reductions
- Large role for Energy Efficiency
- Switch Coal → Gas, RES and Nuclear
- Non-CO2 GHG reduction potential

Cumulative reductions 2010-2030: 4 840 MtCO2e

- Non-CO2 GHG + CO2 process
- Analysis based on Enerdata scenario

- Demand reduction: 21%
- Fossil switch: 26%
- CCS: 4%
- Elec, heat, H2: 2%
- Biomass: 7%
- Nuclear: 10%
- Industry: 9%
- Waste: 11%
- Agriculture: 3%
- Other REN: 7%
- Electrolysis and H2: 2%
- CCS: 4%
- Elec, heat, H2: 2%
- Biomass: 7%
- Nuclear: 10%
- Industry: 9%
- Waste: 11%
- Agriculture: 3%
- Other REN: 7%
Additional outputs from the EU 2030 analysis

- **Fossil fuels** remain dominant but decrease
 - Decrease from 75% to 65% of the mix, and drop 20% in volume, by 2030
 - In New MS, ambitious objectives would entail cuts in coal and shifts to gas, renewables and nuclear

- **27% Energy Efficiency** objective will require a change in the investment trend

- **Carbon value** would become a significant factor in investment decisions after 2020
 - ETS sectors: carbon price would reach 80€ / tCO2 by 2030
 - Non-ETS sectors: significant policies & measures and associated investments needed to contain a carbon price to that level
Thank you for your attention!